A Versatile New Reagent [Ph $_3$ GeCH $_2$ COGePh $_3$] as Acetate Equivalent. BF $_3$ ·OEt $_2$ Mediated Aldol Reaction

Syun-ichi KIYOOKA,* Fuminori SHIOTA, and Tsutomu SHIBUYA
Department of Chemistry, Kochi University,
Akebono-cho 2-5-1, Kochi 780

Triphenylgermylacetyltriphenylgermane, $Ph_3GeCH_2COGePh_3$, with aldehydes has been found to afford the corresponding aldol products in the presence of boron trifluoride etherate in good yields.

Recently a facile synthesis of acylgermanes has been reported. When the reaction was applied to ethyl bromoacetate with three molar equiv. of triphenyl-germyllithium at room temperature for 10 min, a new reagent, triphenylgermylacetyl-triphenylgermane $(\underline{1})$, was synthesized in 66% yield, which seems to be a potential acetate equivalent because of the two characteristic germyl functions in it. These

$$BrCH2COOCH2CH3 + Ph3GeLi \longrightarrow Ph3GeCH2COGePh3 (1)$$
(1)

germyl functions can be stepwise or concurrently utilized in subsequent C-C bond formation. Acylgermyl moiety may be transformed to acid and aldehyde by hydrolysis and photolysis 3) and moreover to vinylgermane with Wittig reagents. 4) The α -germyl function of 1 is expected to be activated by Lewis acid because the carbonyl group of acylgermane has a similar character to that of ketone. 5) In practice, the congener α -trimethylsilyl ketones react with aldehydes, ketones, or acetals under Lewis acidic conditions. 6)

$$RCHO + Ph_3GeCH_2COGePh_3 \longrightarrow RCHCH_2COGePh_3$$
 (2)

We found that the reagent 1 reacts with aldehydes in the presence of boron trifluoride etherate to give aldols; but does not react with ketones or acetals under similar conditions. The chemoselectivity of $\underline{1}$ in the acidic aldol reaction exhibits a great contrast to that of α -silyl ketones. The results are shown in Table 1. The yields are good and the reactions are without any by-products; the acylgermyl moiety is clearly stable under the Lewis acidic conditions. As shown in entries 4 and 5, α , β -unsaturated aldehydes give the corresponding aldols, but not 1,4-addition products.

A typical experimental procedure is as follows: To a solution of boron trifluoride etherate (1 mmol) in dichloromethane (2 ml) was gradually added a dichloromethane solution (5 ml) of the reagent $\underline{1}$ (1 mmol) and aldehyde (1 mmol) at -78 °C. The resulting solution was stirred for 2 h at the temperature. The reaction mixture was quenched with saturated NaCl solution and washed with aqueous Na $_2$ CO $_3$ solution. The organic layer was extracted with ether and dried over MgSO $_4$. After

Chemistry Letters, 1987

evaporation of the solvent, the crude product was purified by flash column chromatography to give pure aldol.

Entry	Aldehyde	Product ⁸⁾	Isolated yield/%
1	PhCHO	PhCH(OH)CH ₂ COGePh ₃	81
2	(сн ₃) ₂ снсно	(CH ₃) ₂ CHCH(OH)CH ₂ COGePh ₃	73
3	сн ₃ сн ₂ сн ₂ сно	CH3CH2CH2CH(OH)CH2COGePh3	75
4	PhCH=CHCHO	PhCH=CHCH(OH)CH ₂ COGePh ₃	66
5	CH ₃ CH=CHCHO	CH ₃ CH=CHCH(OH)CH ₂ COGePh ₃	68

Table 1. The $\mathrm{BF}_3\cdot\mathrm{OEt}_2$ Mediated Aldol Reaction with the Reagent 1

Contrary to acidic media, the aldol reaction of the reagent 1 in basic media using lithium diisopropylamide could not give any products; most of the starting 1 was recovered, though the reaction of propionyltriphenylgermane with aldehyde under similar conditions gave a mixture of syn and anti aldols in a moderate yield.

Further studies are in progress on the stereochemistry in the Lewis acid mediated reaction with the reagent 1; Cram and anti-Cram selectivity, etc.

References

- 1) S. Kiyooka and A. Miyauchi, Chem. Lett., <u>1985</u>, 1829.
- 2) Mp 171-172 °C; IR (nujo1) 1660 cm⁻¹; 1 H-NMR (CDC1 $_{3}$)(100 MHz) $_{\delta}$ 3.45 (s, 2H), 7.26 (br, 15H), 7.30 (br, 15H); Under similar conditions ethyl 2-bromopropionate did not give the corresponding α -triphenylgermyl product.
- G. J. D. Peddle, J. Organomet. Chem., <u>14</u>, 139 (1968); K. Mochida, K. Ichikawa,
 S. Okui, Y. Sakaguchi, and H. Hayashi, Chem. Lett., <u>10</u>, 235 (1967).
- 4) A. G. Brook and S. A. Fieldhouse, J. Organomet. Chem., 10, 235 (1967).
- 5) H. Sakurai and M. Kira, Kagaku No Ryoiki, 22, 898 (1968).
- 6) T. Inoue, T. Sato, and I. Kuwajima, J. Org. Chem., 49, 4671 (1984).
- 7) The reactions using $SnCl_{\Delta}$ or $TiCl_{\Delta}$ also did not give products.
- 8) The elemental analyses were satisfactorily obtained. All new compounds were fully identified by their IR and NMR spectra. Product in entry 4: IR (neat) $1650~\rm cm^{-1}$; $^{1}\rm H-NMR$ (CDCl $_{3}$)(100 MHz) $_{\delta}$ 2.90 (br, 1H), 3.12 (d, 2H, J = 6 Hz), 4.89 (m, 1H), 6.18 (dd, 1H, J = 6, 17 Hz), 6.64 (d, 1H, J = 17 Hz), 7.62 (m, 20H): Details will be given in the full paper.

(Received December 12, 1986)